

 École polytechnique fédérale de Lausanne

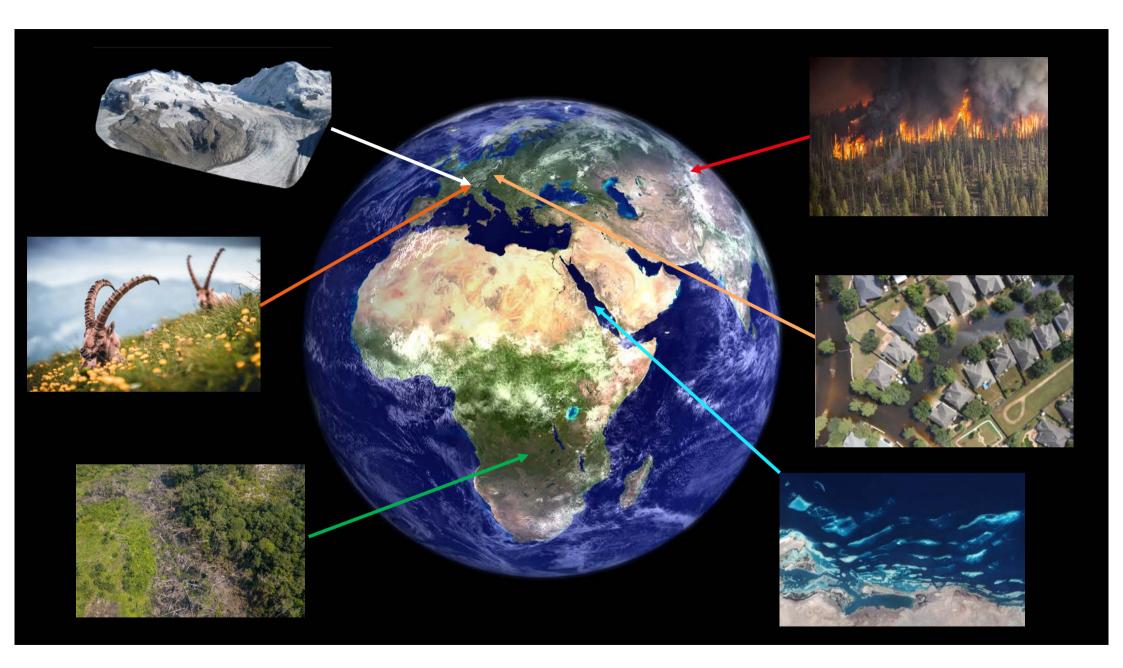
Environmental Computational Science and Earth Observation

Started September 1st, 2020

Our mission

- Monitor our planet with Earth observation technology, from the drone to the satellite
- Develop fair, transparent machine learning technology
- Serve applications with high impact on society

Web: eceo.epfl.ch



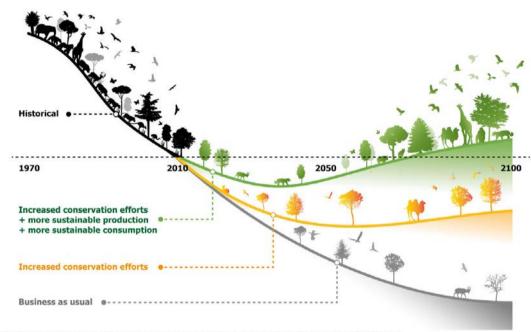
The biodiversity crisis is yet to hit us...

 15-37% of species risk extinction to 2050

[Thomas et al., Nature (2004)]

 Thousands of populations have been lost in a century. It is accelerating

[Ceballos et al., PNAS (2020)]



his artwork illustrates the main findings of the article, but does not intend to accurately represent its results (https://doi.org/10.1038/s41586-020-2705-

Ihttps://earthjustice.org/features/biodiversity-crisis

Source: www.unep-wcmc.org

Biodiversity needs to be protected

Consequences on

- Health,
 pest and diseases,
 medicines
- Food security
 soil formation
 purification of air/water
 detoxification of waste
 food availability
 crop variety

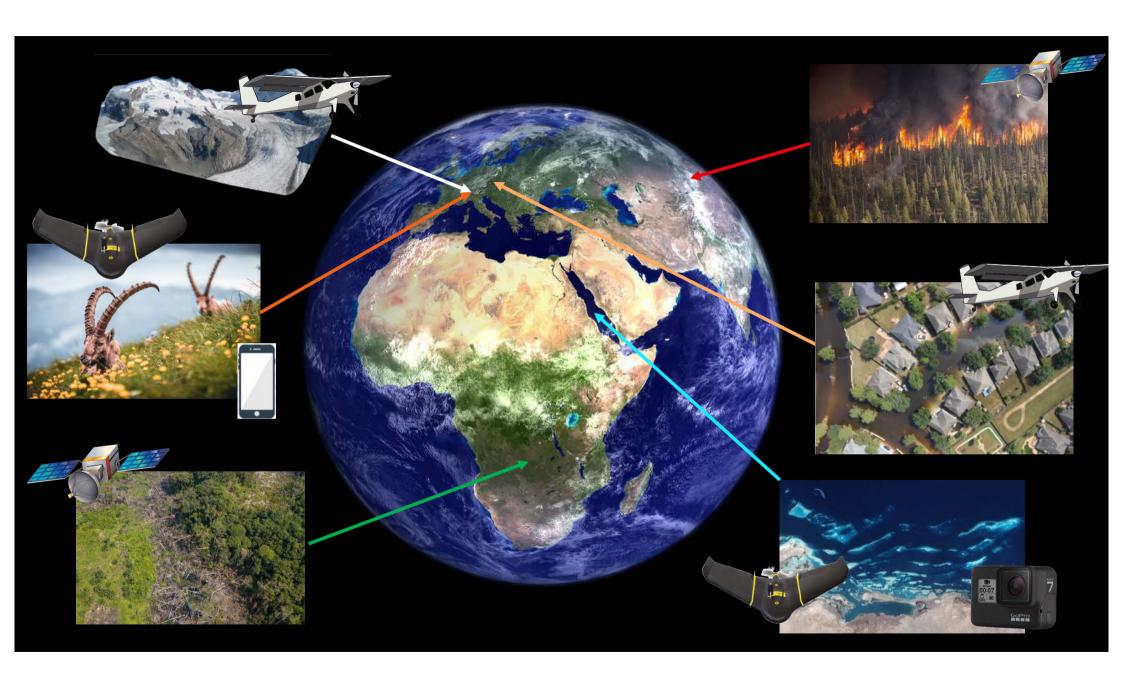
Source: The Hamilton Spectator, 2020

Why should I care?

- Conservation actors work hard to protect populations
- They record and control populations, establish laws, fight poaching
- They do <u>everything by hand</u>
 - Data samples are very small
 - When they have data, they are years behind processing

Ol pejeta reserve, Kenya

Kuzikus reserve, Namibia

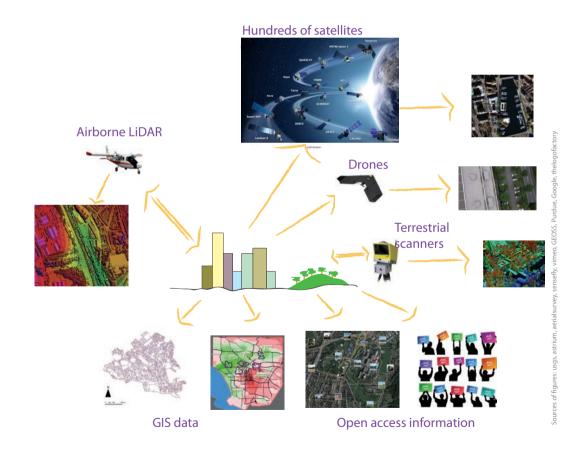


EPFL - Intro Env Sci Eng

EPFL

There are many sensor data to monitor Earth in 2015

- 333 Earth Observation satellites in orbit in 2015 [ucsusa.org].
- 10'000 recreational drones registered in the U.S. by 2020 [FAA].
- 20 Pb of oblique photos in Google Street View in 2015 [Google Maps].

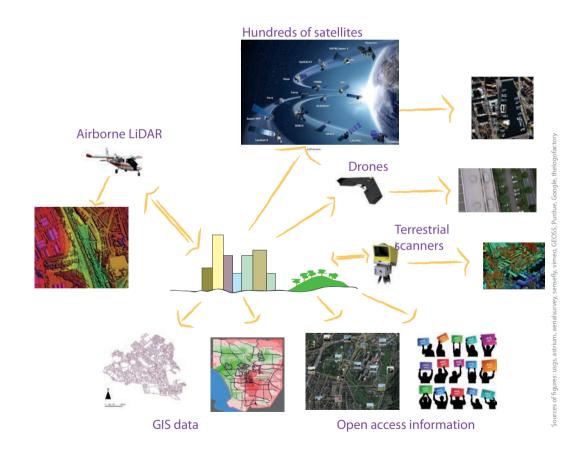


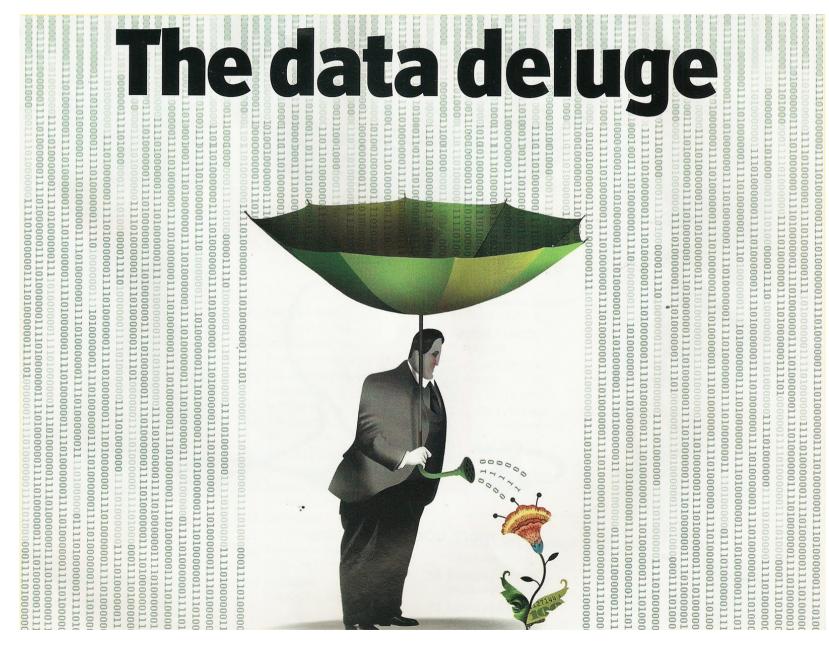
EPFL - Intro Env Sci Eng

EPFL

There are many sensor data to monitor Earth in 2015 2024

- 333 1'005 Earth Observation satellites in orbit in 2023 [ucsusa.org].
- 10'000–1'100'000 recreational drones registered in the U.S in 2023. [FAA].
- 170 billions of oblique photos in Google Street View in 2020 [Google Maps].



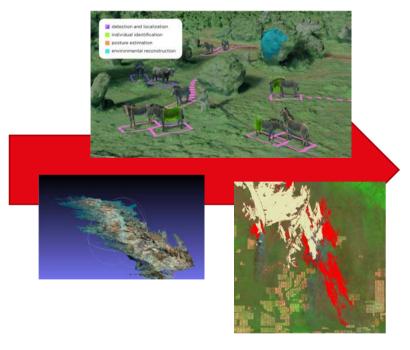


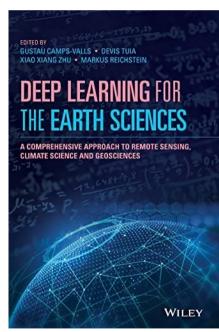
D. Tuia, 2024

Why now: statistical and computational models are good enough

 Machine learning has reached a certain maturity... and percolated in many fields of science.

2022

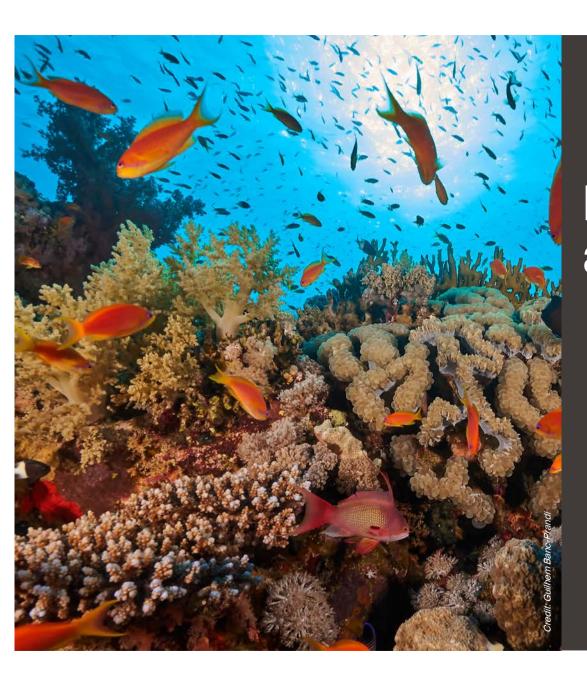




2015

In today's talk

- We will discuss some avenues where machine learning can make the difference for environmental sciences.
- I will show you some examples of success stories from my lab.
- Hopefully it will inspire you to use ML for good,
- Maybe engage in actions such as



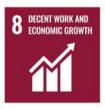
Remote sensing above and underwater.

An adventure to understand and protect our oceans.

The sustainable development goals

SUSTAINABLE GALS DEVELOPMENT GALS

12 RESPONSIBLE CONSUMPTION AND PRODUCTION



EPFL - Intro Env Sci Eng

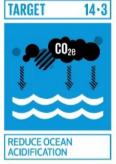
Source: undp.org

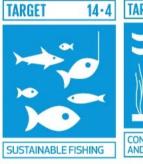
14 LIFE BELOW WATER

EPFL

EPFL - Intro Env Sci Eng

TARGET

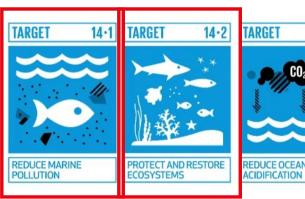


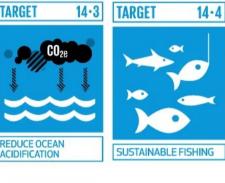


OVERFISHING

EPFL - Intro Env Sci Eng

Today we talk about life above and under water.





OVERFISHING

RESOURCES

Why is that important?

The health of oceans is tied to the health of our planet (and ours).

 Food: 3 billion people rely on fresh seafood as main source of proteins, sustainable fishing is key.

Health: The fish we eat should not be contamined with microplastics!

Biodiversity: Coral reefs cover only 0.1% of oceans, but host 25% of all marine life.
 If too many coral die, entire marine ecosystems will disappear.

EPFL - Intro Env Sci Eng

 Protection: Coral reefs protect coastlines from erosion and storms, and support tourism and its revenue to local population.

Source: wwf

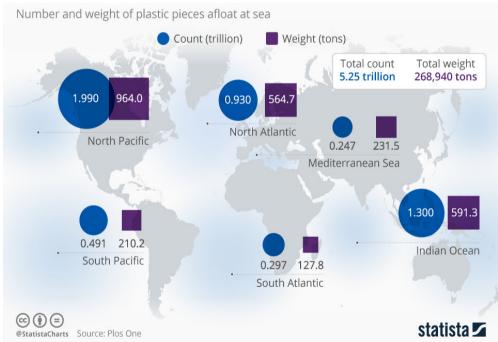
EPFL - Intro Env Sci Eng

EPFL

Despite of this...

 In 50 years, we have lost half our corals.

 Oceans are infested with plastic waste.



A talk in two parts

, 2024

Part I Above waters

Part II Below waters

Part I

Above waters

Detecting marine litter from space

Marine litter is a BIG problem

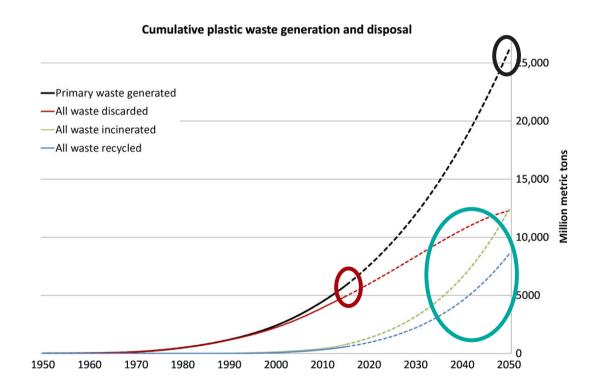
Macro-plastics decompose in microplastics that are

- a direct danger to animals
- have been found in
 - Antarctic Penguins
 - deep-sea sediments
 - human stool
 - ...

with unclear and potentially harmful impact on human health

Recycling is going better, but...

- Usage of plastics is expected to increase
- Today a majority is discarded
- Incineration and recycling expected to increase



Detecting Marine litter

1) Marine litter permanently pollutes our environment and is a health risk (e.g. E.Coli)

Cuttings Beach, Durban (South Africa) Image: Lisa Guastella 2) Single campaigns collect marine litter at small scale, e.g. [Ruiz et al., 2020]

Bay of Biscay, France Image: Oihane Basurko

Ruiz, I., Basurko, O. C., Rubio, A., Delpey, M., Granado, I., Cózar, A. (2020). Litter windrows in the south-east coast of the Bay of Biscay: an ocean process enabling effective active fishing for litter. Frontiers in Marine Science, 7, 308.

Detection of Visible Marine Debris as Marine Litter proxy

Photo twitter @oihanecb

Oceanic processes aggregate debris on the water surface: windrows

2018:

16.2 tons in 68 working days collected plastic litter in the Bay of Biscay [Ruiz et al., 2020]

Windrows are marine debris that may contain marine litter

Ruiz, I., Basurko, O. C., Rubio, A., Delpey, M., Granado, I., Cózar, A. (2020). Litter windrows in the south-east coast of the Bay of Biscay: an ocean process enabling effective active fishing for litter. Frontiers in Marine Science, 7, 308.

Detecting Marine litter at scale

1) Marine litter permanently pollutes our environment

Cuttings Beach, Durban (South Africa) Image: Lisa Guastella 2) Single campaigns collect marine litter at small scale, e.g. [Ruiz et al., 2020]

Bay of Biscay, France Image: Oihane Basurko 3) Lack of large-scale satellite-based detection methods limits collection efforts

even though

an abundance of satellite data is freely available:

Sentinel-2, PlanetScope

Mifdal, J., Longépé, N., and **Rußwurm, M.**: Towards detecting floating objects on a global scale with learned spatial features using Sentinel-2, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 285–293, https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021, 2021.

Detecting Marine litter at scale

1) Marine litter permanently pollutes our environment

Cuttings Beach, Durbar (South Africa) Image: Lisa Guastella How well can we

marine litter at small scale, e.g. [Ruiz et al., 2020]

detect, map and monitor 3) Lack of large-scale satellite-based detection methods limits collection efforts

even though

an abundance of satellite data is freely available:

marine litter from satellite data?

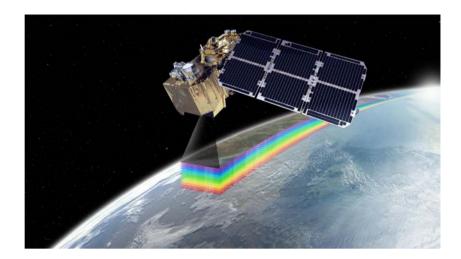
Image: Oihane Basurko

Mifdal, J., Longépé, N., and **Rußwurm, M.**: Towards detecting floating objects on a global scale with learned spatial features using Sentinel-2, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 285–293, https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021, 2021.

EPFL Available Satellite Data

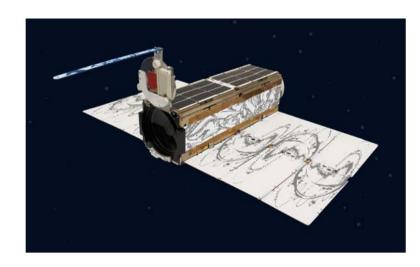
Sentinel-2

- 2 satellite constellation
- free of charge
- 12 spectral bands
- 10m pixel size
- every 2-5 days



PlanetScope Doves

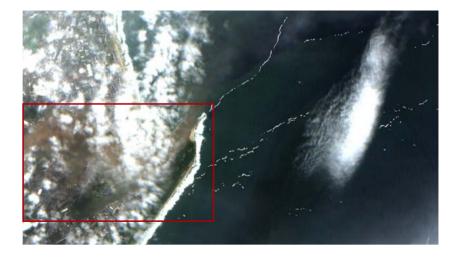
- >160 satellites
- commercial (= \$!)
- 4 spectral bands (RGB-IR)
- 3m pixel size
- every day



EPFL Available Satellite Data

Sentinel-2

- 2 satellite constellation
- free of charge
- 12 spectral bands
- 10m pixel size
- every 2-5 days

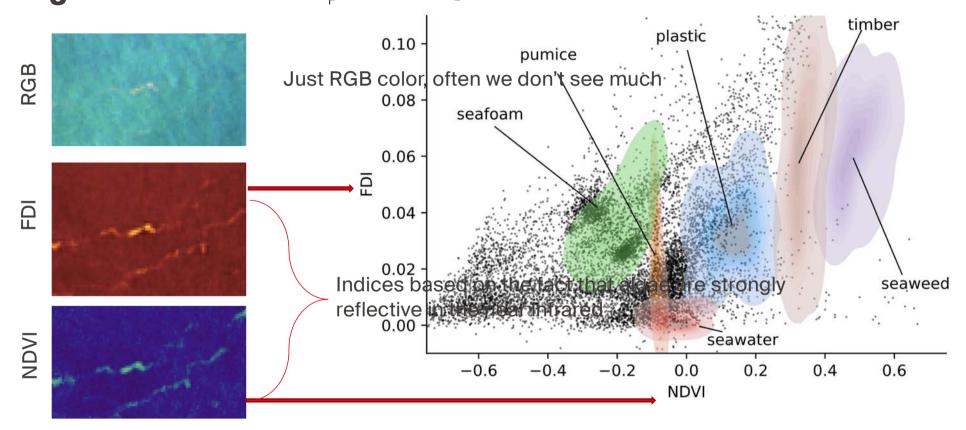


PlanetScope Doves

- >160 satellites
- commercial (= \$!)
- 4 spectral bands (RGB-IR)
- 3m pixel size
- every day

Spectral indices do not guarantee linear separability.

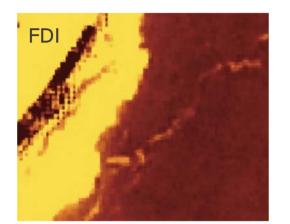
■PFL - Intro Env Sci Eng

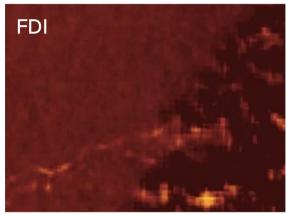


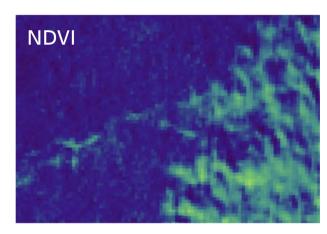
Mifdal, J., Longépé, N., and **Rußwurm, M.**: Towards detecting floating objects on a global scale with learned spatial features using Sentinel-2, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2021, 285–293, https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021, 2021.

Indices sensitive also to

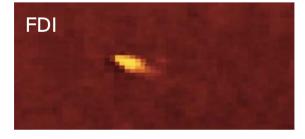
coastline and sea spray





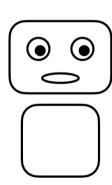


ships

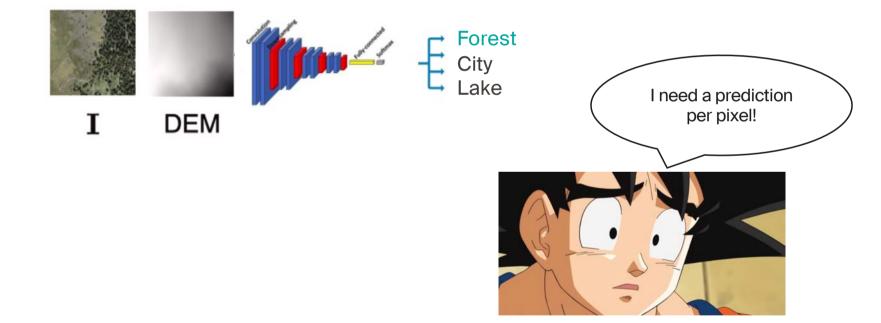


Indices are good for visualization, but pixel-wise classifiers on spectral indices are too simple

Ok we have data, but how to convert it into information?



But how to do segmentation?

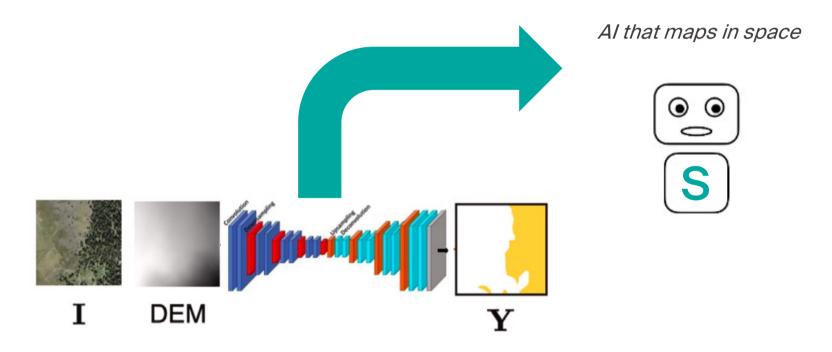


https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html

We need a mirrow structure!

EPFL - Intro Env Sci Eng

A hourglass structure for segmentation!

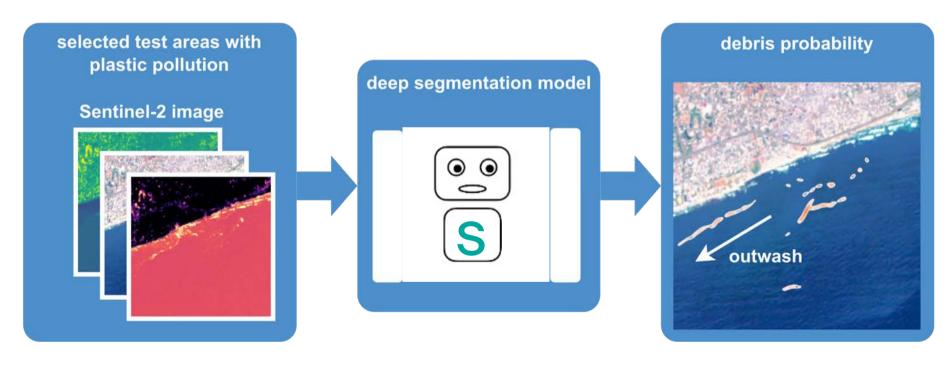


https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-keras.html

Learning to map debris with CNNs

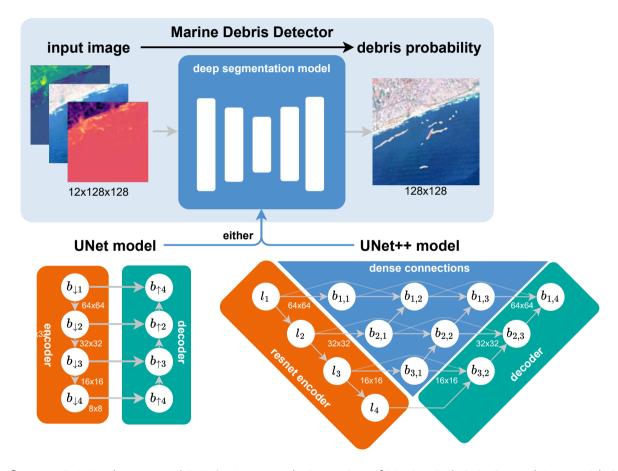
Marine Debris Detector

Large-scale detection of marine debris with Sentinel-2



M. Rußwurm, S. J. Venkatesa, and **D.Tuia**. Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2. *iScience*, 108402, 2023. Available: https://www.sciencedirect.com/science/article/pii/S2589004223024793

Learning Spatial Context with CNNs



M. Rußwurm, S. J. Venkatesa, and **D.Tuia**. Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2. *iScience*, 108402, 2023. <u>Available: https://www.sciencedirect.com/science/article/pii/S2589004223024793</u>

EPFL - Intro Env Sci Eng

Datasets

FloatingObjects Dataset

San Francisco Toledo Bay of Biscay Kent Point Farm New Orleans Tunisia Accra Lagos Panama Tangshan Tangshan Shengsi Tung Chung Kolkata Vung Tau Long Xuyen Rio de Janeiro Port Alfred

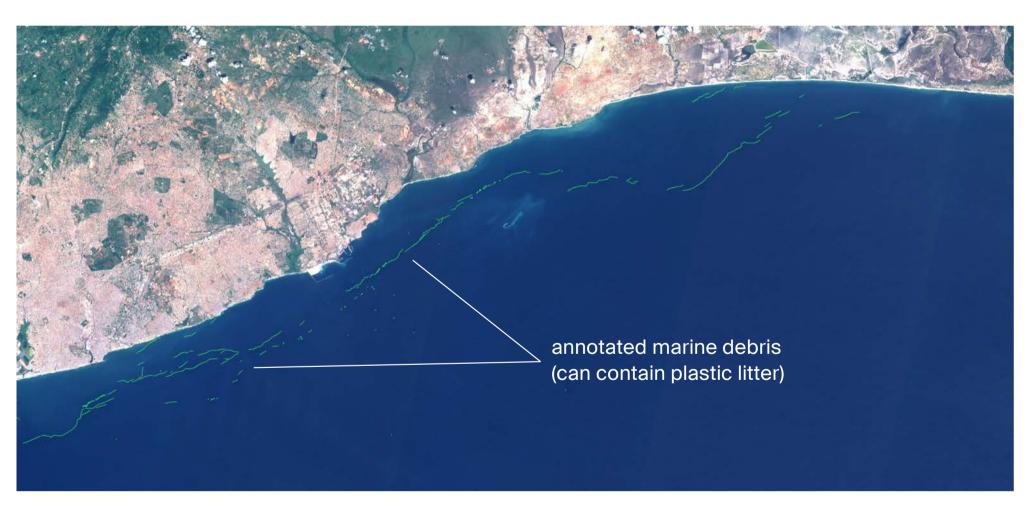
Marine Debris Archive (MARIDA)

Mifdal et al., 2020, Carmo et al., 2021

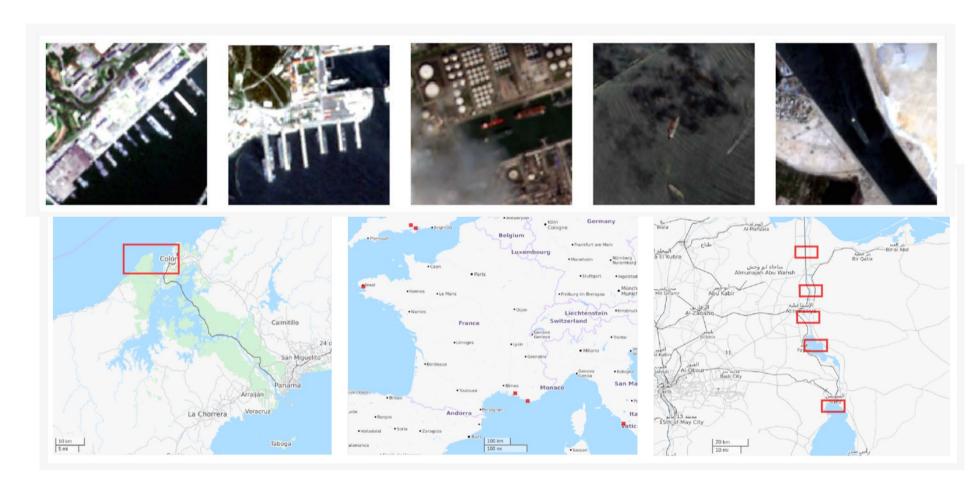
Kikaki et al., 20021

Hand-labelled debris visible on satellite images to the best of their knowledge

Accra (Sentinel-2 scene 2018-10-31)



Focus on the negatives: S2ships



Ciocarlan, Alina, and Andrei Stoian. 2021. "Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning" *Remote Sensing* 13, no. 2

Results

Takehome

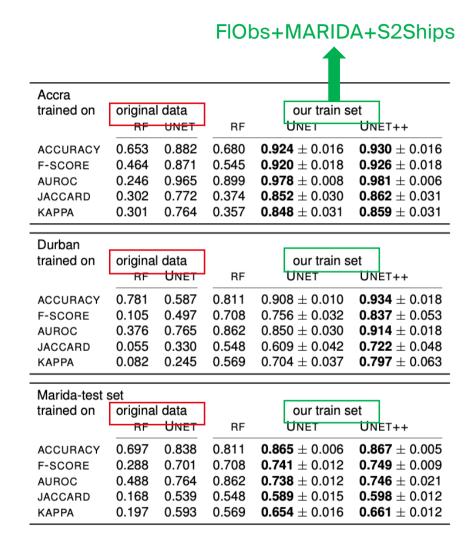
 Complex models (Deep learning) tend to outperform simple ones

Accra		l data		a tuala a	_1	
trained on	original data		our train set			
	RF	UNET	RF	UNET	UNET++	
ACCURACY	0.653	0.882	0.680	0.924 ± 0.016	0.930 ± 0.016	
F-SCORE	0.464	0.871	0.545	0.920 ± 0.018	0.926 ± 0.018	
AUROC	0.246	0.965	0.899	0.978 ± 0.008	0.981 ± 0.006	
JACCARD	0.302	0.772	0.374	$\textbf{0.852} \pm 0.030$	0.862 ± 0.031	
KAPPA	0.301	0.764	0.357	$\textbf{0.848} \pm 0.031$	$\textbf{0.859} \pm 0.031$	
Durban						
trained on	original data			our train set		
	RF	UNET	RF	UNET	UNET++	
ACCURACY	0.781	0.587	0.811	0.908 ± 0.010	0.934 ± 0.018	
F-SCORE	0.105	0.497	0.708	0.756 ± 0.032	0.837 ± 0.053	
AUROC	0.376	0.765	0.862	0.850 ± 0.030	0.914 ± 0.018	
JACCARD	0.055	0.330	0.548	0.609 ± 0.042	$\textbf{0.722} \pm 0.048$	
KAPPA	0.082	0.245	0.569	$\textbf{0.704} \pm \textbf{0.037}$	$\textbf{0.797} \pm 0.063$	
Marida-test set						
trained on	origina		our train set			
	RF	UNET	RF	UNET	UNET++	
ACCURACY	0.697	0.838	0.811	0.865 ± 0.006	0.867 ± 0.005	
F-SCORE	0.288	0.701	0.708	0.741 ± 0.012	$\textbf{0.749} \pm 0.009$	
AUROC	0.488	0.764	0.862	$\textbf{0.738} \pm 0.012$	0.746 ± 0.021	
JACCARD	0.168	0.539	0.548	$\textbf{0.589} \pm 0.015$	$\textbf{0.598} \pm 0.012$	
KAPPA	0.197	0.593	0.569	$\textbf{0.654} \pm 0.016$	0.661 ± 0.012	

EPFL Results

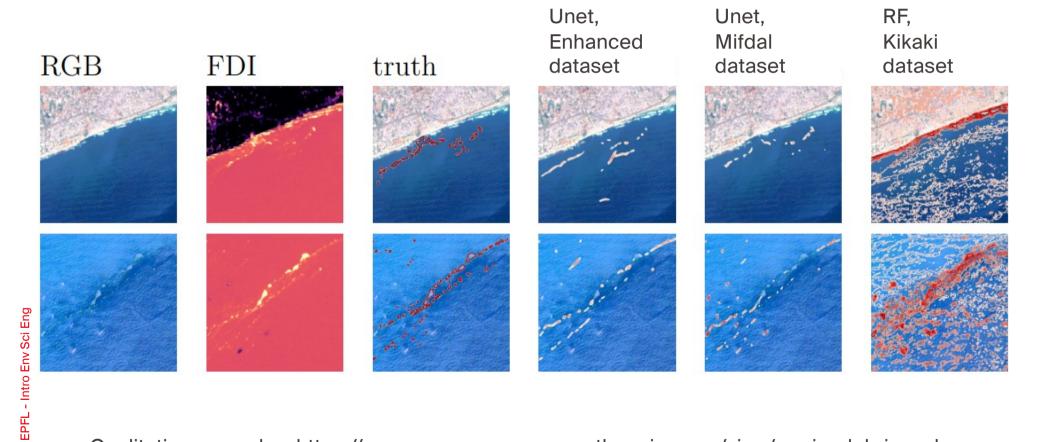
Takehome

- Complex models (Deep learning) tend to outperform simple ones
- Data more important than models!



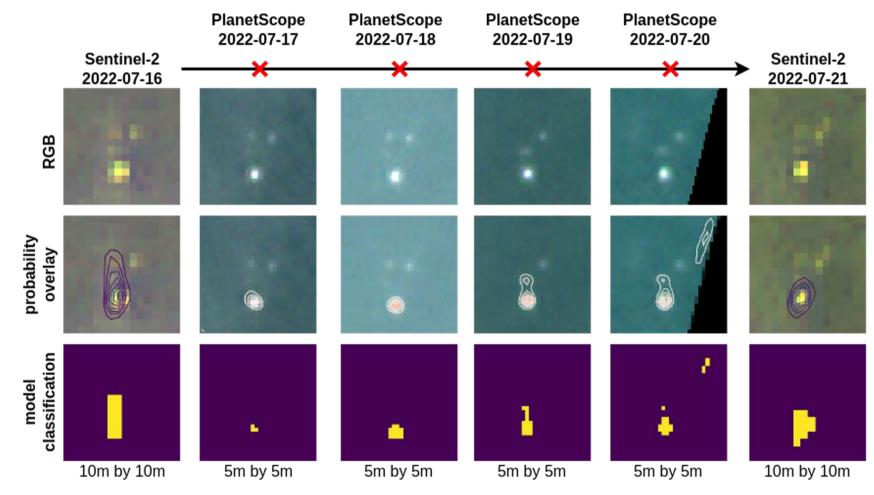
M. Rußwurm, S. J. Venkatesa, and **D.Tuia**. Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2. *In press https://arxiv.org/abs/2307.02465*

Prediction examples



Qualitative examples: https://marcrusswurm.users.earthengine.app/view/marinedebrisexplorer

Detections on the Plastic Litter project 2022



M. Rußwurm, S. J. Venkatesa, and **D.Tuia**. Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2. *iScience*, 108402, 2023. <u>Available: https://www.sciencedirect.com/science/article/pii/S2589004223024793</u>

Part II

Underwater

Characterizing coral reefs at scale

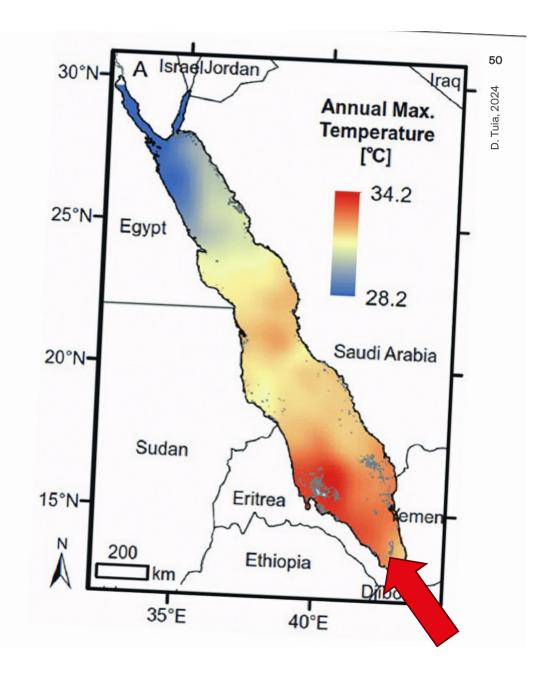
Still, in some places corals resist.

- Red sea corals are much more resistant to heat
- We need to understand why
- We need to map and monitor, to better follow the evolution of reefs' health and protect them

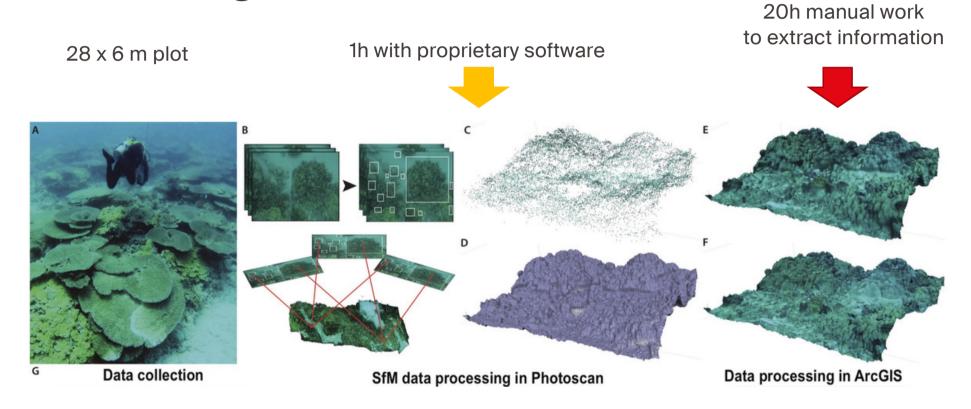


Still, in some places corals resist.

- Red sea corals are much more resistant to heat
- We need to understand why
- We need to map and monitor, to better follow the evolution of reefs' health and protect them

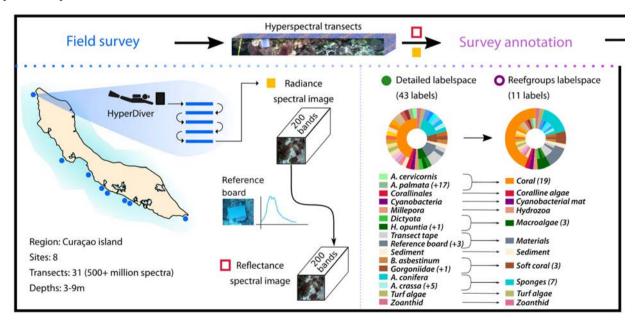


When the technology does not scale well, monitoring is difficult.



When the setup is unique: great results, but difficult to apply elsewhere

- Published models often rely on complex setups, very expensive
- E.g. hyperspectral sensors



Our bet: affordable setups

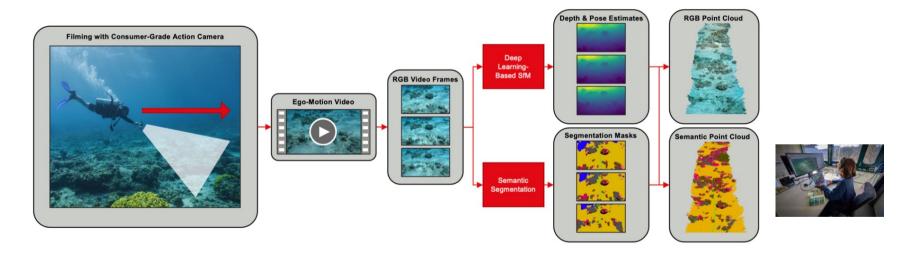
- Scalable to other reefs
- Easy to acquire / replace
- Can train local communities

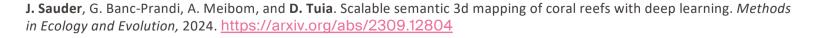
Mark I: March 2022 - Isreal / Jordan

Photo credits: Guilhem Banc-Prandi, 2022

Enabling scalable reef monitoring: Open source, fast, large scale.

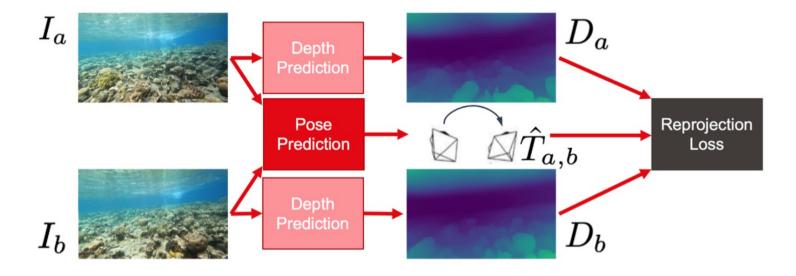
- A model that works on videos, leveraging 2 tasks
- Once trained, 3D reconstructs a 100m transect in playing video time
- Tested in Israel, Jordan and Djibouti in 2022/2023





Pose and depth estimation

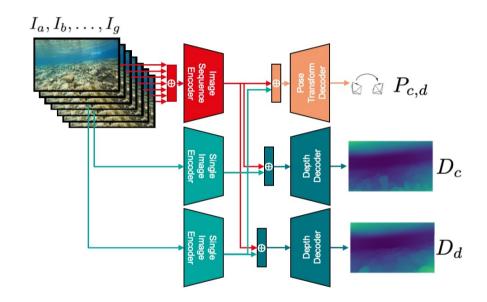
- Encoders based on ResNet-34
- Can create the 3D map at 18 frames per second



J. Sauder, G. Banc-Prandi, A. Meibom, and **D. Tuia**. Scalable semantic 3d mapping of coral reefs with deep learning. *Methods in Ecology and Evolution*, 2024. https://arxiv.org/abs/2309.12804

Pose and depth estimation

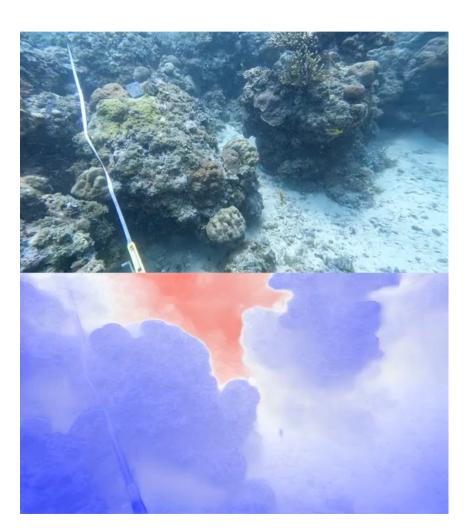
- We enforce temporal consistency by encoding 7 frames at a time
- 3 before and 3 after
- Each decoder uses the frame
 + the sequence features



EPFL - Intro Env Sci En

Pose and depth estimation

- We enforce temporal consistency by encoding 7 frames at a time
- 3 before and 3 after
- Each decoder uses the frame+ the sequence features

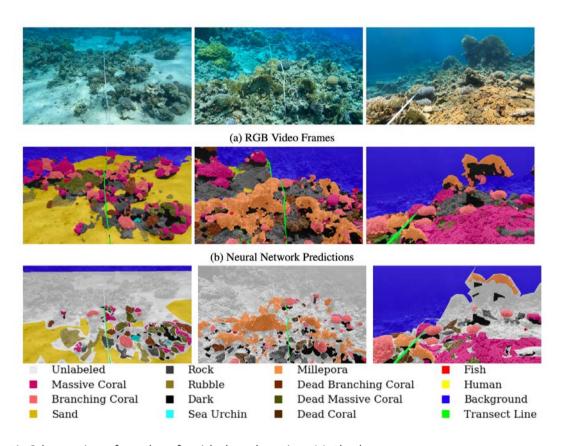


EDEL - Intro Env Sci Eng

EPFL

Semantic segmentation

- Unet with ResNeXt backbone
- ~85% accurate in Jordanian and Israeli reefs
- Used to remove unwanted classes prior to 3D reconstruction
 - Diver body
 - Fishes



J. Sauder, G. Banc-Prandi, A. Meibom, and **D. Tuia**. Scalable semantic 3d mapping of coral reefs with deep learning. *Methods in Ecology and Evolution*, 2024. https://arxiv.org/abs/2309.12804

Learning to detect unwanted classes

Used to remove unwanted classes prior to 3D reconstruction

- Diver body
- Fishes
- Far away pixels

Video frame

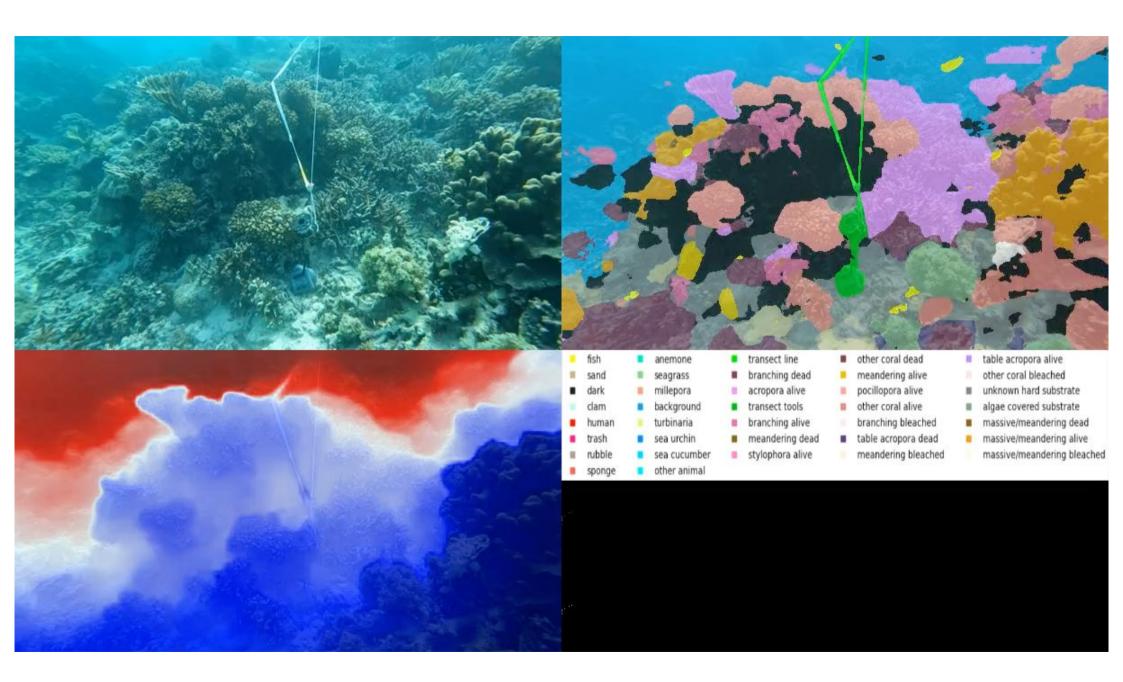
Segmentation

Uncertainty

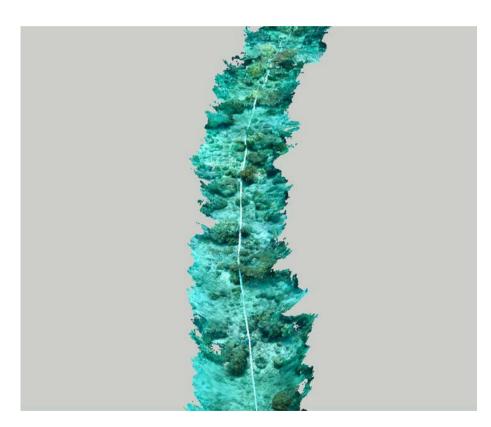
Learning to detect unwanted classes

Used to remove unwanted classes prior to 3D reconstruction

- Diver body
- Fishes
- Far away pixels

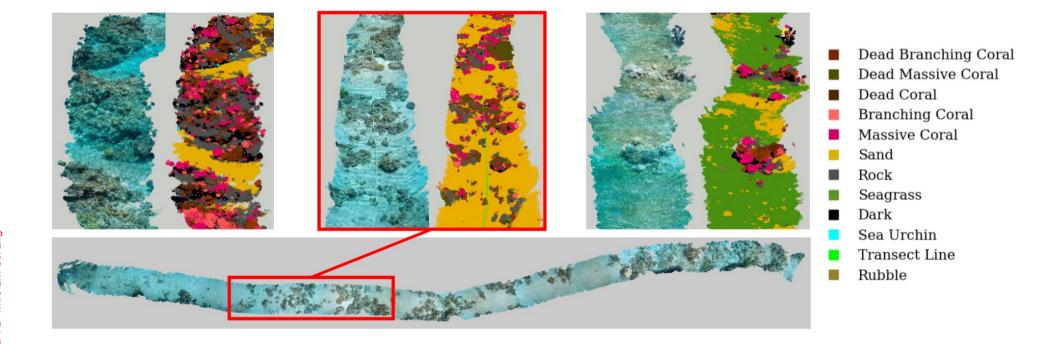


The multitask model allow us to create reliable 3D reconstructions of the reef



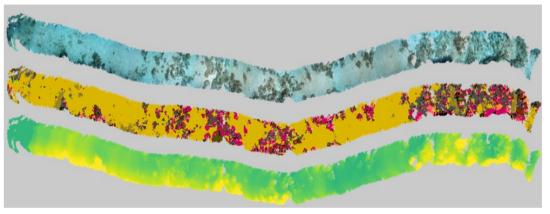
Mapping entire dive sites

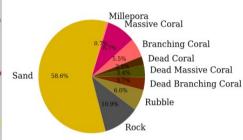
(here: 100m long)



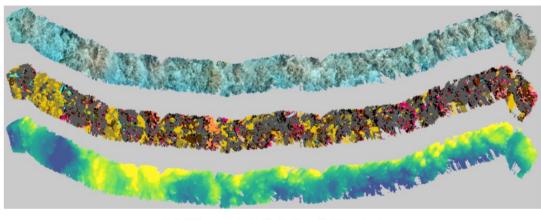
Mapping entire dive sites

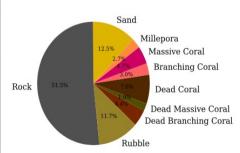
(here: 100m long)





(a) King Abdullah Reef (Sandy)





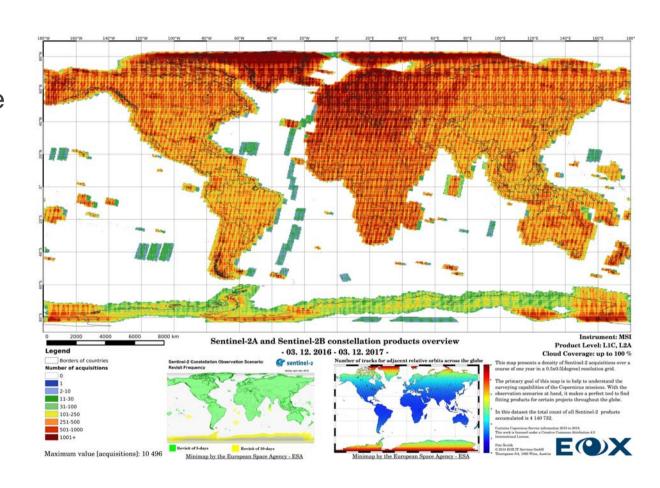
(b) King Abdullah Reef (Rocky)

Part III bonus

What about lands?

Remote sensing observes everywhere!

- Remote sensing has the advantage of being .. remote.
- We can observe Earth basically everywhere.

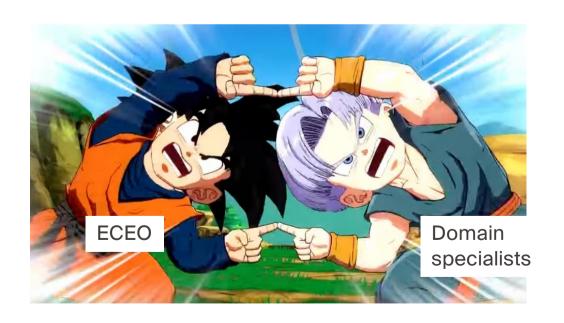


FPFI - Intro Fpy Sci Fng

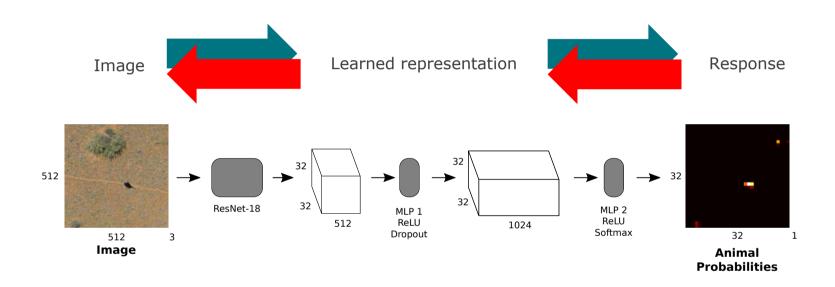
EPFL

But the images alone won't give you much.

- This is why we focus on technology to convert data into information and collaborate with domain specialists.
- Interdisciplinarity is the way!
- Let's see a couple of examples



Ecology: accelerating animal censuses



- Together with park rangers, we develop systems to help them detect and count wildlife
- Census can be accellerated by a factor 100! (Desplanque et al., 2024)

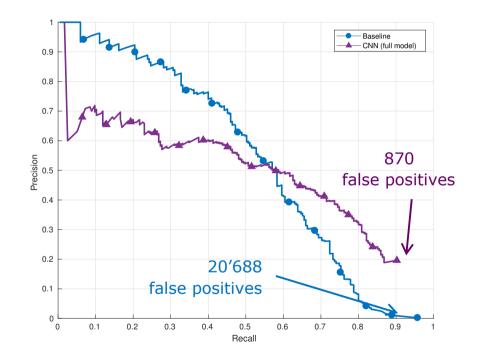
■ EPFL - Intro Env Sci Eng

EPFL

An example in Kuzikus park, Namibia

 Compared to EESVMs [Rey et al., 2017 RSE]

 The CNN outperforms it for high recall rates



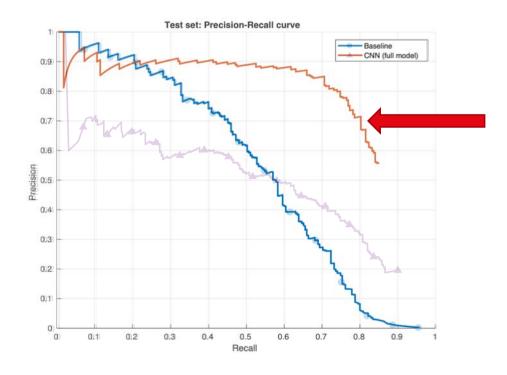
Paper. Kellenberger, Marcos, Tuia: Detecting Mammals in UAV Images: Best Practices to address a substantially Imbalanced Dataset with Deep Learning. Remote Sensing of Environment, 216:139-153, 2018. https://arxiv.org/abs/1806.11368

EDEL - Intro Env Sci En

EPFL

An example in Kuzikus park, Namibia

- And we keep working on it and improving it.
- This is the 2024 situation.
- At 80% recall i.e. when finding 80% of the animals
- Has a 65% precision (116 false positives)



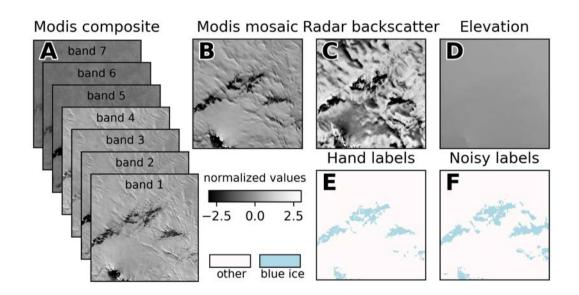
EPFL - Intro Env Sci Eng

We also build open source software

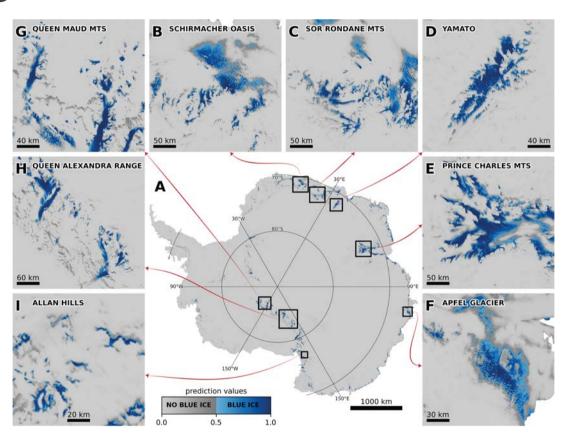
https://github.com/microsoft/aerial_wildlife_detection

Cryosphere: treasure hunting for blue ice

- We collected continentalscale remote sensing data
 - Optical (MODIS)
 - Rarar (RADARSAT)
 - Elevation
- And learned a neural network to predict blue ice locations



Cryosphere: treasure hunting for blue ice



Tollenaar et al., Where the white continent is blue: deep learning locates bare ice in Antarctica. Geophysical Research Letters, 51(3):e2023GL106285, 2024. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GL106285

Nice model

detecting

EPFL

Beyond images: integrating language in interactions

We can create AI models to extract information from images

 With proper training sets, we can reproduce observations and scaleup!

But the level of interaction remains low

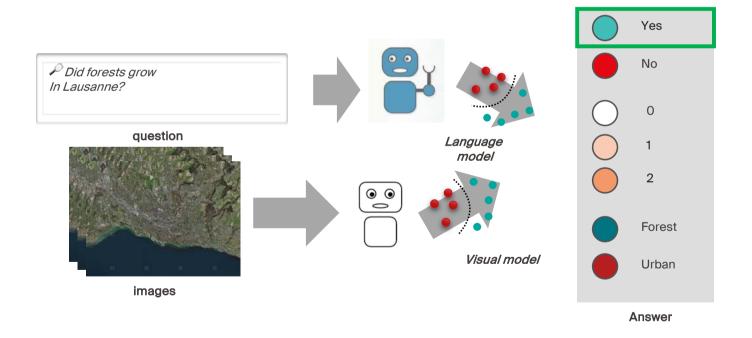
Should we create new models for each application?

shutterstock.com · 2117680460

Vision language models in remote sensing

S. Lobry, D. Marcos, J. Murray, and D. Tuia. RSVQA: visual question answering for remote sensing data. *IEEE Trans. Geosci. Remote Sens.*, 58(12):8555–8566, 2020.

- By using language, we can
 - Improve the access to Earth observation for non-specialists

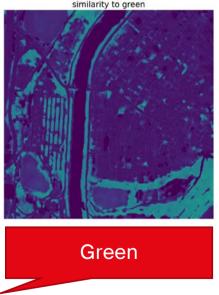


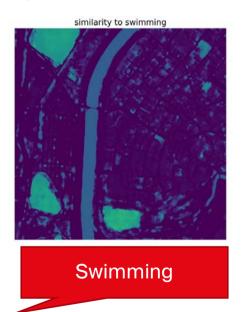
Aerial image credits: swisstopo

Vision language models in remote sensing

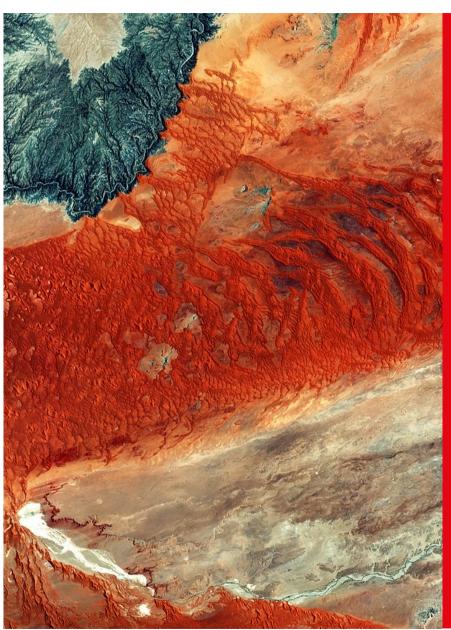
V. Zermatten, J. Castillo Navarro, L. Hughes, and D. Tuia. Text as a richer source of super- vision in semantic segmentation tasks. In *IEEE International Geoscience and Remote Sensing Symposium, IGARSS*, Pasadena, CA, 2023.

- By using language, we can
 - Improve the access to Earth observation for non-specialists
 - Allow dynamic class definitions and exploration





Concluding remarks



My view on Remote sensing and Al

Advance remote sensing science to monitor and protect Earth
Interface disciplines and approaches

Bring new, open tools making EO science accessible to anyone

My view on **Remote sensing and Al**

Advance remote sensing science to monitor and protect Earth

Interface disciplines and approaches

Bring new, open tools making EO science accessible to anyone

